Abstract
The Formula SAE teaches university students to design and manufacture a marketable vehicle for racing. The Technion Formula consists of 7 subgroups whom, together, designed and built this vehicle.

The Drivetrain team of the Technion Formula conducted comprehensive research of drivetrain systems and vehicle dynamics for preliminary modeling. Simplicity, manufacturability, maintenance, performance, and system integration were essential elements in design.

Analysis
SRR - System requirement review:
System Requirement Review used to define fundamental requirements from the complete system.
• Transmission connected via chain to the rear axle.
• Maximum speed of 130 [km/h].
• Acceleration 0-100 km/h: 4.9 [sec].
• Fitting to 2005 Suzuki GSX-R600 Engine.
• System weight not exceeding 18 [kg].
• Life duration : 3500 [km].

PDR - Preliminary design review:
Comprehensive research and study conducted in order to set primary design key-points.
• Torsen T1 differential with self designed housing.
• RCV Formula SAE driveshaft.
• Final reduction ratio: 48:14.

Product Objective and Requirements
The Technion Formula Teams’ objective is to design, manufacture, market and race a vehicle according to the Formula SAE guidelines.

The Drivetrain Teams’ objective is to design and develop drivetrain system that will optimize performance and reliability whilst minimizing cost and weight.

Product Description

How The System Works

Drivetrain system is a mechanical system which delivers the power generated from the engine to the wheels.

1. The power is transmitted from the engine to the rear axle by a sprocket chain combination as shown in Figure 1.

2. The power is transmitted from the rear Sprocket to the differential through the sprocket Differential Adapter (Figure 2)

3. The differential (Figure 3) transfer torque to both rear drive axles whilst also allowing them to spin at different speeds (transfer different torque).

4. RCV Formula SAE Driveshafts (axles Figure 4) deliver the power from the differential to the wheels.

Final Product:

Acknowledgements
We would like to especially thank the following for their support and assistance with this project: Rueben Katz, Giora Gorali, Hagay Bamberger, Nimrod Meller, Lea Stern, Kfir Cohen, Yaacov (Jacob) Hauzer, Sveta...